
Below is the outline of the runtime of our two-day training which includes the
theory and the hands-on exercises. We have calculated this based on the
content shared below with approximate timing for each section highlighted

as “coverage & duration”.

== Day 1 ==

• Agenda & Objective of the training
• Introduction
• Why fuzzing
• Types of fuzzing

• Introduction to Whitebox fuzzing
• Types of AFL
• Introduction to AFL (american fuzzy lop)
• Working of AFL
• Understanding the core principles of AFL

• Understanding AFL mutation
• AFL strategy
• AFL utilities
• Prerequisite and installation

Coverage & duration: The above section takes minimum of 1:30 hours in

which we cover the theory aspect of our training. During the above one of
the trainers would be distributing the public server info and will ask if any
troubleshooting is required.

A 10-minute coffee break

• Fuzzing with STDIO
• Finding targets
• Fuzzing ubuntu packages
• Not a pro tip

• Resolving dependencies

Coverage & duration: The above section takes 1:45 hour to complete, which
includes minimum of 3 exercises. However, in this version (2023) we have
added more programs to fuzz.

• Smart Fuzzing
• Instrumenting Binaries
• AFL Instrumentation
• Input Generation for Fuzzing
• Radamsa – Test case generation

• Coverage Guided Fuzzing
• Test Case Minimization

Coverage & duration: The above section takes ~2 hours to complete which
includes 6 different complex programs such as coreutils, VIM. In this version
(2023) we have also added fuzzing sudo and sudoedit, exiv2, hermes.

• Corpus Optimization
• Crash triage
• Effective ways of crash triage
• Exploitable or not?

Coverage & duration: The above section takes 30 minutes which completes
a bit of theory such as types of registers and fundamentals of debugging. The
practical done over here would be continuation from the above fuzzed
binaries.

A 40-minute lunch break

• Introduction to ASAN/MSAN
• LLVM Symbolizer
• Domain-Specific Fuzzing

Coverage & duration: The above section takes 30 minutes which covers the
fundamentals of sanitizers and symbolizers. There are 2 exercises covered in
this section.

• Comparing trace bitmap
• Difference in yields, path
• Utilizing grammar for Fuzzing
• Hooking custom libraries

Coverage & duration: The above section takes 45 minutes which covers how

grammars can be used in fuzzing and attendees learn how to write their own
grammar to fuzz a program. Attendees can pick any target here from GitHub
or which is provided in VM.

• Symbolic Fuzzing

• Real world examples for symbolic fuzzing
• Difference in coverage guided and symbolic fuzzing

Coverage & duration: This section is new for 2023. It would be completed in 1
hour. This section would cover theory of what symbolic fuzzing is and how we

can enable it in our existing AFL framework.

• Generating graphs
• Optimizing the fuzzing hierarchy
• Primary and Secondary technique

Coverage & duration: So, this is our miscellaneous section where we discuss
about challenges we face during fuzzing and how to overcome it. This
section takes 30 minutes, this year we have added few more tips.

• Day 1 Exercise (Homework)

Coverage & duration: Attendees can participate in this; they have to
replicate a UAF bug in VIM which would be discussed in day 2.

== Day 2 ==

• RECAP – Day 1
• Yields from Exercise #1
• Triage analysis (2)

Coverage & duration: The above section would cover a brief recap of day 1
and would be completed in ~30 minutes.

• AFL Persistence
• What is AFL Persistence
• Implementation of AFL Persistence

•. Commit patching for fuzzing

Coverage & duration: This section would cover how attendees can enhance
their fuzzing approach via AFL persistence and understanding the while loop
statement in C. This section would be completed in 45 minutes. This has 3-4

exercises which includes PHP and VIM.

A 10-minute coffee break

• Introduction to Blackbox fuzzing

• Setting up QEMU
• Fuzzing blackbox binaries with QEMU
• Real world examples and case studies
• Fuzzing stripped v/s non-stripped binaries
• QEMU and Address Sanitizers
• QEMU Persistence mode

• Fuzzing with nyx mode
• Snapshot Fuzzing in Nyx

Coverage & duration: This section would cover the fundamentals of blackbox
fuzzing and how QEMU works. We also fuzz binaries such as busybox, coreutils

and tcpdump and proceed to QEMU persistence mode. This section will take
~2:30 hours.

• Introduction to ARM
• Cross platform fuzzing

Coverage & duration: This section is new for 2023. It would be completed in
~45 minutes. We introduce the concept of cross platform fuzzing and see it in
action. This includes 3-4 ARM based binaries as a part of the exercises.

A 40-minute lunch break

• Setting up WinAFL
• Corpus Utilization

• Corpus Mutation
• Fuzzing windows binaries
• Utilizing symbols for binaries
• Jackalope Internals

Coverage & duration: Here we switch the flavor from Linux to Windows. We

have a look at how fuzzing works on Windows, we introduce WinAFL along
with a few additional components such as DynamoRIO. Finally, we dive into
fuzzing binaries for Windows x64 and x86 platforms. This section takes 2 hours.

• Overview of different fuzzers (Hongfuzz, Fuzzli and Grizzly)

Coverage & duration: Another new topic that we have introduced for our
training this year. We have a look at how different fuzzing frameworks work in
brief. This gives a comparison and a new outlook of how different fuzzing
frameworks operate. This section will take 1 hour.

• Miscellaneous exercise
• Synchronization fuzzing
• Fuzzing VIM
• Regex engine
• Fuzzing OpenSSH x509 Parser

• Fuzzing cURL
• Fuzzing PuTTY
• Fuzzing PHP
• Serialize functions

Coverage & duration: This is the most interesting part in the course where we
introduce fuzzing complex binaries. An attendee will emulate the techniques
learnt so far and get their hands on fuzzing with exploring their own ways to
fuzz. This section will take 1 hour.

• Fuzzing browser engines
• Best practices for fuzzing

Coverage & duration: We further dive into fuzzing browser engines such as
JavaScriptCore & Chakra Core. This section will take 45 minutes.

• Utilizing slack webhooks for continuous fuzzing stats

Coverage & duration: This section will take 15 minutes.

• CTC – Capture the crash – Exercise

Coverage & duration: A custom binary is provided to the attendees to fuzz
and identify crashes. This exercise will take 1 hour.

• Q/A & Feedback (15 minutes)

Additionally: Previous trainings feedback received (BlackHat EU, BruCON &
OWASP AppSec)

© 2023 fuzzing.at

